
S235JR

FAMIGLIA: ACCIAI NON LEGATI STRUTTURALI CATEGORIA:

Acciaio strutturale utilizzato come materiale da costruzione in svariati campi dell'ingegneria: travi reticolari, tralicci, elementi di strutture portanti.

Il settore specifico di impiego è fortemente influenzato dalle caratteristiche di resistenza meccanica, resistenza fisico-chimica, duttilità, fragilità, durabilità dell'acciaio.

da ø4 x 1

a ø100 x 3

	Europa			Italia		Germania		Francia	UK	USA
CORRISPONDENZE	EN 10025-2: 2004			UNI		DIN		NF A	BS	AISI/SAE
	S235JR	N. 1	.0038	Fe360B	RSt37	RSt37-2			40B	A252
COMPOSIZIONE CHIMICA	C% (max)	Mn% (max)	P% (max)	S% (max	N% (max)	Cu% (max)				
	0,17	1,40	0,035	0,035	0,012	0,40				
	Stato	Sezione (mm) Rm	ı (MPa) R	p0.2 (MPa) min	A% (L) min				
		5 <d≤< td=""><td colspan="2">5<d≤10 47<="" td=""><td>355</td><td>8</td><td></td><td></td><td></td><td></td></d≤10></td></d≤<>	5 <d≤10 47<="" td=""><td>355</td><td>8</td><td></td><td></td><td></td><td></td></d≤10>		355	8				
		10 <d≤< td=""><td>≤16 42</td><td>0 - 770</td><td>300</td><td>9</td><td></td><td></td><td></td><td></td></d≤<>	≤16 42	0 - 770	300	9				
	trafilato	16 <d≤< td=""><td>≨40 39</td><td>0 - 730</td><td>260</td><td>10</td><td></td><td></td><td></td><td></td></d≤<>	≨40 39	0 - 730	260	10				
		40 <d≤< td=""><td></td><td>0 - 670</td><td>235</td><td>11</td><td></td><td></td><td></td><td></td></d≤<>		0 - 670	235	11				
		63 <d≤< td=""><td>100 36</td><td>0 - 640</td><td>215</td><td>11</td><td></td><td></td><td></td><td></td></d≤<>	100 36	0 - 640	215	11				
PROPRIETA'										
MECCANICHE										
PROFILO	Tondi	Pi	atti	Quadri Esago		ni Travi	IPE/UPN Ingolari	Tubi trafilati senza saldatura	I I	

da CH6 a CH80

Cfr. sagomario

OPZIONI

DIMENS.

(mm)

STATO

PROFILO

DIMENS. (mm) da ø02 x 160

da 6 x 3

a 400 x 60

da 4 x 4

a 160 x 160

trafilato